Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of an additional infrared excitation on the luminescence efficiency of a single InAs/GaAs quantum dot

Identifieur interne : 000512 ( Russie/Analysis ); précédent : 000511; suivant : 000513

Effect of an additional infrared excitation on the luminescence efficiency of a single InAs/GaAs quantum dot

Auteurs : RBID : Pascal:03-0480329

Descripteurs français

English descriptors

Abstract

Microphotoluminescence (PL) spectra of a single InAs/GaAs self-assembled quantum dot (QD) are studied under the main excitation of electron-hole pairs in the wetting layer (WL) and an additional infrared (IR) laser illumination. It is demonstrated that the IR laser with fixed photon energy well below the QD ground state induces striking changes in the spectra for a range of excitation energies and powers of the two lasers. For the main excitation above a threshold energy, defined as the onset of transitions between shallow acceptors and the conduction band in GaAs, the addition of the IR laser will induce a considerable increase in the QD emission intensity. This is explained in terms of additional generation of extra electrons and holes into the QD by the two lasers. For excitation below the threshold energy, the carrier capture efficiency from the WL into the QD is suggested to be essentially determined by the internal electric-field-driven carrier transport in the plane of the WL. The extra holes, generated in the GaAs by the IR laser, are supposed to effectively screen the built-in field, which results in a considerable reduction of the carrier collection efficiency into the QD and, consequently, a decrease of the QD PL intensity. A model is presented which allows estimating the magnitude of the built-in field as well as the dependence of the observed increase of the QD PL intensity on the powers of the two lasers. The use of an additional IR laser is considered to be helpful to effectively manipulate the emission efficiency of the quantum dot, which could be used in practice in quantum-dot-based optical switches.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0480329

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of an additional infrared excitation on the luminescence efficiency of a single InAs/GaAs quantum dot</title>
<author>
<name sortKey="Moskalenko, E S" uniqKey="Moskalenko E">E. S. Moskalenko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping, Sweden</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping</wicri:regionArea>
<wicri:noRegion>S-581 83 Linkoping</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>A.F. Ioffe Physical-Technical Institute, RAS, 194021, Polytechnicheskaya 26, St. Petersburg, Russia</s1>
<sZ>1 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>A.F. Ioffe Physical-Technical Institute, RAS, 194021, Polytechnicheskaya 26, St. Petersburg</wicri:regionArea>
<wicri:noRegion>St. Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Donchev, V" uniqKey="Donchev V">V. Donchev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping, Sweden</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping</wicri:regionArea>
<wicri:noRegion>S-581 83 Linkoping</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Faculty of Physics, Sofia University, 5, blvd. James Bourchier, 1164-Sofia, Bulgaria</s1>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Bulgarie</country>
<wicri:regionArea>Faculty of Physics, Sofia University, 5, blvd. James Bourchier, 1164-Sofia</wicri:regionArea>
<wicri:noRegion>1164-Sofia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karlsson, K F" uniqKey="Karlsson K">K. F. Karlsson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping, Sweden</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping</wicri:regionArea>
<wicri:noRegion>S-581 83 Linkoping</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holtz, P O" uniqKey="Holtz P">P. O. Holtz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping, Sweden</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping</wicri:regionArea>
<wicri:noRegion>S-581 83 Linkoping</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Monemar, B" uniqKey="Monemar B">B. Monemar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping, Sweden</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping</wicri:regionArea>
<wicri:noRegion>S-581 83 Linkoping</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schoenfeld, W V" uniqKey="Schoenfeld W">W. V. Schoenfeld</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Materials Department, University of California, Santa Barbara, California 93106, USA</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Materials Department, University of California, Santa Barbara, California 93106</wicri:regionArea>
<wicri:noRegion>California 93106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Garcia, J M" uniqKey="Garcia J">J. M. Garcia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Materials Department, University of California, Santa Barbara, California 93106, USA</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Materials Department, University of California, Santa Barbara, California 93106</wicri:regionArea>
<wicri:noRegion>California 93106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Petroff, P M" uniqKey="Petroff P">P. M. Petroff</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Materials Department, University of California, Santa Barbara, California 93106, USA</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Materials Department, University of California, Santa Barbara, California 93106</wicri:regionArea>
<wicri:noRegion>California 93106</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0480329</idno>
<date when="2003-10-15">2003-10-15</date>
<idno type="stanalyst">PASCAL 03-0480329 AIP</idno>
<idno type="RBID">Pascal:03-0480329</idno>
<idno type="wicri:Area/Main/Corpus">00C677</idno>
<idno type="wicri:Area/Main/Repository">00BF12</idno>
<idno type="wicri:Area/Russie/Extraction">000512</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1098-0121</idno>
<title level="j" type="abbreviated">Phys. rev., B, Condens. matter mater. phys.</title>
<title level="j" type="main">Physical review. B, Condensed matter and materials physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Conduction bands</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Photoluminescence</term>
<term>Self-assembly</term>
<term>Semiconductor quantum dots</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7867H</term>
<term>7155E</term>
<term>7866F</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Point quantique semiconducteur</term>
<term>Photoluminescence</term>
<term>Autoassemblage</term>
<term>Bande conduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microphotoluminescence (PL) spectra of a single InAs/GaAs self-assembled quantum dot (QD) are studied under the main excitation of electron-hole pairs in the wetting layer (WL) and an additional infrared (IR) laser illumination. It is demonstrated that the IR laser with fixed photon energy well below the QD ground state induces striking changes in the spectra for a range of excitation energies and powers of the two lasers. For the main excitation above a threshold energy, defined as the onset of transitions between shallow acceptors and the conduction band in GaAs, the addition of the IR laser will induce a considerable increase in the QD emission intensity. This is explained in terms of additional generation of extra electrons and holes into the QD by the two lasers. For excitation below the threshold energy, the carrier capture efficiency from the WL into the QD is suggested to be essentially determined by the internal electric-field-driven carrier transport in the plane of the WL. The extra holes, generated in the GaAs by the IR laser, are supposed to effectively screen the built-in field, which results in a considerable reduction of the carrier collection efficiency into the QD and, consequently, a decrease of the QD PL intensity. A model is presented which allows estimating the magnitude of the built-in field as well as the dependence of the observed increase of the QD PL intensity on the powers of the two lasers. The use of an additional IR laser is considered to be helpful to effectively manipulate the emission efficiency of the quantum dot, which could be used in practice in quantum-dot-based optical switches.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1098-0121</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. rev., B, Condens. matter mater. phys.</s0>
</fA03>
<fA05>
<s2>68</s2>
</fA05>
<fA06>
<s2>15</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of an additional infrared excitation on the luminescence efficiency of a single InAs/GaAs quantum dot</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MOSKALENKO (E. S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DONCHEV (V.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KARLSSON (K. F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HOLTZ (P. O.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MONEMAR (B.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SCHOENFELD (W. V.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>GARCIA (J. M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>PETROFF (P. M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics and Measurement Technology, Linkoping University, S-581 83 Linkoping, Sweden</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>A.F. Ioffe Physical-Technical Institute, RAS, 194021, Polytechnicheskaya 26, St. Petersburg, Russia</s1>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Faculty of Physics, Sofia University, 5, blvd. James Bourchier, 1164-Sofia, Bulgaria</s1>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Materials Department, University of California, Santa Barbara, California 93106, USA</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s2>155317-155317-14</s2>
</fA20>
<fA21>
<s1>2003-10-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2003 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>03-0480329</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical review. B, Condensed matter and materials physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Microphotoluminescence (PL) spectra of a single InAs/GaAs self-assembled quantum dot (QD) are studied under the main excitation of electron-hole pairs in the wetting layer (WL) and an additional infrared (IR) laser illumination. It is demonstrated that the IR laser with fixed photon energy well below the QD ground state induces striking changes in the spectra for a range of excitation energies and powers of the two lasers. For the main excitation above a threshold energy, defined as the onset of transitions between shallow acceptors and the conduction band in GaAs, the addition of the IR laser will induce a considerable increase in the QD emission intensity. This is explained in terms of additional generation of extra electrons and holes into the QD by the two lasers. For excitation below the threshold energy, the carrier capture efficiency from the WL into the QD is suggested to be essentially determined by the internal electric-field-driven carrier transport in the plane of the WL. The extra holes, generated in the GaAs by the IR laser, are supposed to effectively screen the built-in field, which results in a considerable reduction of the carrier collection efficiency into the QD and, consequently, a decrease of the QD PL intensity. A model is presented which allows estimating the magnitude of the built-in field as well as the dependence of the observed increase of the QD PL intensity on the powers of the two lasers. The use of an additional IR laser is considered to be helpful to effectively manipulate the emission efficiency of the quantum dot, which could be used in practice in quantum-dot-based optical switches.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70A55E</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7867H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7155E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Autoassemblage</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Self-assembly</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Bande conduction</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Conduction bands</s0>
</fC03>
<fN21>
<s1>321</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0345M000779</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000512 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000512 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:03-0480329
   |texte=   Effect of an additional infrared excitation on the luminescence efficiency of a single InAs/GaAs quantum dot
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024